El ciclo terrestre del carbono se presenta en la Figura 1. En este ciclo, el carbono orgánico del suelo representa la mayor reserva en interacción con la atmósfera y se estima en cerca de 1 500 Pg C a 1 m de profundidad (cerca de 2 456 a dos metros de profundidad)
El carbono inorgánico representa cerca de 1 700 Pg pero es capturado en formas más estables tales como el carbonato de calcio. La vegetación (650 Pg) y la atmósfera (750 Pg) almacenan considerablemente menos cantidades que los suelos.
Los flujos entre el carbono orgánico del suelo o terrestre y la atmósfera son importantes y pueden ser positivos bajo la forma de captura o negativos como emisión de CO2.
Históricamente se han notado grandes variaciones. Houghton (1995) estima que las emisiones correspondientes al cambio de uso de la tierra -deforestación e incremento del pastoreo y de las tierras cultivadas- fueron cerca de 140 Pg entre 1850 y 1990 (de 0,4 Pg/año en 1850 a 1,7 Pg/año en 1990), con una liberación neta hacia la atmósfera de 25 Pg de carbono. De acuerdo con IPCC (2000), la pérdida histórica de los suelos agrícolas fue de 50 Pg de carbono en el último medio siglo, lo cual representa un tercio de la pérdida total del suelo y la vegetación.
En el pasado, el desarrollo de la agricultura fue la principal causa del incremento de la concentración de CO2 en la atmósfera, pero hoy día, los mayores contribuyentes son la combustión de los combustibles fósiles por parte de la industria y el transporte (6,5 Pg/año). Un hecho importante, es que mientras la deforestación de muchas áreas tropicales produce emisiones de carbono estimadas en 1,5 Pg/año, al mismo tiempo se produce una acumulación en los ecosistemas terrestres de 1,8 a 2 Pg/año. Esto representa lo que es conocido como el carbono faltante en el ciclo: un sumidero que podría estar situado principalmente en la parte norte del hemisferio norte (Schindler, 1999). Los principales factores que actúan sobre la evolución de la materia orgánica conciernen la vegetación -ingreso de residuos, composición de las plantas-, los factores climáticos -condiciones de temperatura y humedad- y las propiedades del suelo -textura, contenido y mineralogía de la arcilla, acidez.
Otros factores relacionados con la fertilización del suelo (N, P o S) o con el riego, tienen efecto sobre la producción de las plantas y por lo tanto sobre el contenido de materia orgánica. La tasa de mineralización de la materia orgánica del suelo depende sobre todo de la temperatura y de la disponibilidad de oxígeno -drenaje-, el uso de la tierra, los sistemas de cultivo, el manejo del suelo y de los cultivos (Lal et al., 1995). En un tipo de suelo dado expuesto a prácticas constantes, se alcanza un casi-equilibrio -situación estable- de la materia orgánica del suelo después de 30 a 50 años (Greenland, 1995). En el contexto del combate del calentamiento global y del Protocolo de Kyoto, un punto importante es cómo crear en los suelos agrícolas de todo el mundo un sumidero de carbono bien cuantificado. Tal captura de carbono será relevante para los artículos 3.3 y 3.4 del Protocolo y también tendrá efectos positivos adicionales para la agricultura, el ambiente y la biodiversidad.
Pg = 1015 g = Gt =109 toneladas métricas
No hay comentarios:
Publicar un comentario